Kernel PCA|Python sklearnによる実装メモ
カーネル法
データを高次元の特徴空間に写像することで、
カーネル法により、非線形データを扱うことができる。
共分散行列をカーネルに置き換え、固有値分解をする。
プログラム
from sklearn.decomposition import KernelPCA kpca = KernelPCA(n_components=2) kPCA_DR = kpca.fit_transform(df)
カーネル法
データを高次元の特徴空間に写像することで、
カーネル法により、非線形データを扱うことができる。
共分散行列をカーネルに置き換え、固有値分解をする。
from sklearn.decomposition import KernelPCA kpca = KernelPCA(n_components=2) kPCA_DR = kpca.fit_transform(df)